neural_network.back_propagation_neural_network ============================================== .. py:module:: neural_network.back_propagation_neural_network .. autoapi-nested-parse:: A Framework of Back Propagation Neural Network (BP) model Easy to use: * add many layers as you want ! ! ! * clearly see how the loss decreasing Easy to expand: * more activation functions * more loss functions * more optimization method Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23 Classes ------- .. autoapisummary:: neural_network.back_propagation_neural_network.BPNN neural_network.back_propagation_neural_network.DenseLayer Functions --------- .. autoapisummary:: neural_network.back_propagation_neural_network.example neural_network.back_propagation_neural_network.sigmoid Module Contents --------------- .. py:class:: BPNN Back Propagation Neural Network model .. py:method:: add_layer(layer) .. py:method:: build() .. py:method:: cal_loss(ydata, ydata_) .. py:method:: plot_loss() .. py:method:: summary() .. py:method:: train(xdata, ydata, train_round, accuracy) .. py:attribute:: ax_loss .. py:attribute:: fig_loss .. py:attribute:: layers :value: [] .. py:attribute:: train_mse :value: [] .. py:class:: DenseLayer(units, activation=None, learning_rate=None, is_input_layer=False) Layers of BP neural network .. py:method:: back_propagation(gradient) .. py:method:: cal_gradient() .. py:method:: forward_propagation(xdata) .. py:method:: initializer(back_units) .. py:attribute:: activation :value: None .. py:attribute:: bias :value: None .. py:attribute:: is_input_layer :value: False .. py:attribute:: learn_rate :value: None .. py:attribute:: units .. py:attribute:: weight :value: None .. py:function:: example() .. py:function:: sigmoid(x: numpy.ndarray) -> numpy.ndarray